Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

نویسندگان

  • Kiho Bae
  • Dong Young Jang
  • Hyung Jong Choi
  • Donghwan Kim
  • Jongsup Hong
  • Byung-Kook Kim
  • Jong-Ho Lee
  • Ji-Won Son
  • Joon Hyung Shim
چکیده

In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton trapping in yttrium-doped barium zirconate.

The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. H...

متن کامل

Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantl...

متن کامل

High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition.

Reducing the operating temperature in the 500-750 °C range is needed for widespread use of solid oxide fuel cells (SOFCs). Proton-conducting oxides are gaining wide interest as electrolyte materials for this aim. We report the fabrication of BaZr(0.8)Y(0.2)O(3-δ) (BZY) proton-conducting electrolyte thin films by pulsed laser deposition on different single-crystalline substrates. Highly textured...

متن کامل

Atomic Resolution Distortion Analysis of Yttrium-Doped Barium Zirconate

Ionic transport dynamics underpins the functionality of most energy storage and conversion technologies. Yttrium-doped barium zirconate (Y-BZO) has attracted attention as a promising electrolyte for proton-conducting solid oxide fuel cells (PC-SOFCs), which stems from its high proton conductivity and excellent chemical stability at intermediate temperatures (400-700°C) [1]. The Grotthuss mechan...

متن کامل

Unraveling the defect chemistry and proton uptake of yttrium-doped barium zirconate

A review of the experimental literature documenting water uptake in yttrium-doped barium zirconate in combination with new results obtained here show that much of the observed scatter can be explained in terms of barium deficiency, which furthermore induces a lowering in cell volume. In addition, through a comparison of weight changes under regular and heavy water vapor pressure, strong evidenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017